# I he Synthesis and Reactivity of Alkylaminosubstitutedmethylenediphosphonates

Ding Quan Qian, Xiao Dong Shi, Ru Zhen Cao, and Lun Zu Liu

National Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Received 9 September 1998; revised 3 December 1998

ABSTRACT: Reactions of diethyl phosphite with Vilsmeier reagents,  $RCONR^{1}R^{2}/POCl_{3}$ , afforded various alkylaminosubstitutedmethylenediphosphonates in acceptable yields, which (R = H) were then reacted with aldehydes under the conditions of the Wittig–Horner reaction to furnish vinylphosphonates, and which (R = H) underwent alkylation with alkyl halides to give alkylaminosubstitutedmethylenediposphonates 8. (Z)-Vinylphosphonates could be converted to (E)-isomers in refluxing ethyl acetate. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 271–276, 1999

## INTRODUCTION

Much work has been reported in recent literature on the synthesis, reactivity, and bioactivity of alkylaminomethylenediphosphonates [1–7]. Among numerous synthetic methods, two reports have detailed the reaction of dimethylchloroformiminium chloride with triethyl phosphite to give tetraethyl dimethylaminomethylenediphosphonate 1 (Scheme 1) [3,8].

Dimethylchloroformiminium chloride was found to be an efficient reagent for the synthesis of dimethylaminomethylenediphosphonates, in spite of only a few compounds having been prepared according to this method.

### RESULTS AND DISCUSSION

As part of our research on the pesticidal phosphonates, we have been interested in facile and general routes to the synthesis of various alkylaminosubstitutedmethylenediphosphonates. We recently discovered a novel strategy for the preparation of alkylaminomethylenediphosphoranes **3** using the reaction of hydridophosphorane **2** with Vilsmeier reagents (Scheme 2) [9,10].

The interesting results obtained encouraged us to extend our investigation to other phosphorus compounds containing a P–H bond. We selected diethyl phosphite as a starting material because of its ready preparation and remarkable nucleophilicity









Correspondence to: Lun Zu Liu

Contract Grant Sponsor: National Natural Science Foundation of China

Contract Grant Number: 29672019

<sup>© 1999</sup> John Wiley & Sons, Inc. CCC 1042-7163/99/040271-06

and established successfully the following reaction (Scheme 3).

The reaction was carried out under very mild conditions. The preformed Vilsmeier reagents were added to diethyl phosphite. The reaction mixture was stirred at room temperature for  $8 \sim 12$  hours. The products 4 were purified by column chromatography (Table 1), and their structures were confirmed by <sup>1</sup>H NMR, <sup>31</sup>P NMR, MS, and quantitative elemental analyses (Table 2).

A more plausible pathway of this reaction might consist of two steps. In the first step, the nucleophilic phosphorus center apparently attacks the electrophilic central carbon of iminium salt 5 with elimination of HOP(O)Cl<sub>2</sub> to give the intermediate 6, which then reacts further with another mole of diethyl phosphite in a manner such that the phosphorus atom attacks the carbon of 6 with elimination of HCl (Scheme 4).

It is noteworthy that phosphorane 2 only reacts with Vilsmeier reagents formed from substituted formamides and phosphorus oxychloride (Scheme 2), but diethyl phosphite can react with various Vilsmeier reagents from substituted formamides, acetylamides, benzoylamides, phenylacetamide, and phosphorus oxychloride (Scheme 3). This difference can be explained by consideration of steric hin-





**TABLE 1** Products 4 Prepared

| Product<br><b>4</b> | R                             | R¹                                | $R^2$                            | Yieldª<br>(%) |
|---------------------|-------------------------------|-----------------------------------|----------------------------------|---------------|
| а                   | Н                             | $CH_3$                            | $CH_3$                           | 66.1          |
| b                   | Н                             | C₂H₅                              | C₂H₅                             | 63.2          |
| С                   | Н                             | Н                                 | CH₃                              | 50.2          |
| d                   | Н                             | $C_{3}H_{7}$                      | $C_{3}H_{7}$                     | 58.5          |
| е                   | Н                             | CH <sub>3</sub>                   | C <sub>6</sub> H <sub>5</sub>    | 80.7          |
| f                   | Н                             | (Cl                               | $H_{2})_{5}$                     | 75.3          |
| g                   | Н                             | (CH <sub>2</sub> ) <sub>2</sub> ( | D(CH <sub>2</sub> ) <sub>2</sub> | 77.9          |
| ň                   | CH3                           | ĊH <sub>3</sub>                   | È ČĤ,                            | 51.3          |
| i                   | CH                            | C <sub>2</sub> H <sub>5</sub>     | C <sub>2</sub> H <sub>5</sub>    | 46.2          |
| i                   | CH                            | C <sub>3</sub> H <sub>7</sub>     | C <sub>3</sub> H <sub>7</sub>    | 57.2          |
| k                   | CH                            | CH3                               | C <sub>e</sub> H <sub>5</sub>    | 38.6          |
| I                   | CH                            | Cl) ّ                             | H₂)₅ ँ                           | 50.4          |
| m                   | CH₄                           | (CH <sub>2</sub> ) <sub>2</sub> ( | D(CH <sub>2</sub> )              | 55.3          |
| n                   | C <sub>e</sub> H <sub>e</sub> | CH <sub>3</sub> <sup>2/2</sup>    | ` ĆĤ₃                            | 30.2          |
| ο                   | $C_6H_5CH_2$                  | CH <sub>3</sub>                   | CH <sub>3</sub>                  | 36.8          |

<sup>a</sup>Determined by isolation.

drance. X-ray diffraction shows that the steric crowding in compounds **3** is more severe than that in compounds **4** [10].

Our further investigation deals with reactivity of the compounds 4 (R = H), which react with aldehydes under the conditions of the Wittig-Horner reaction to yield the vinylphosphonates 7 (Scheme 5, Tables 3 and 4).

The reaction provides a mixture of E and Z diasteroisomers, which were separated by column chromatography. The E or Z configuration was deduced from the coupling constant between the phosphorus nucleus and the vinylic proton. The coupling constant of the Z isomer is far larger than that of the E isomer (Tables 3 and 4). <sup>31</sup>P NMR spectroscopy shows that the Z isomer is found at a higher field than the E isomer, and the difference is approximately 2–3 ppm (Table 3).

Yields of Wittig-Horner reactions were low due to recovery of starting material. The reactions gave both geometric isomers with low to high stereoselectivity. It was noteworthy that the Z isomer could be converted to the E isomer when an ethyl acetate solution of compound 7 was refluxed for about 8 hours (Table 5, entries a, b, and c(i)). However, the E isomer was difficult to be converted to the Z isomer under the same condition (Table 5, entries c(ii), d, and f). At sufficiently high temperature, it was possible to secure rupture of the  $\pi$  bond without breaking the sigma bond so that the conversion of the isomers would occur [11]. The experiments have shown that steric interference between groups on the same side of the  $\pi$  bond caused an increase in energy content of that isomer and that the trans isomer (or that isomer with its largest groups on opposite sides) is the lower-energy species.

The sodio-carbanions of compounds 4 could be generated from compounds 4 by deprotonation with NaH, and they reacted with alkyl halides leading to alkylaminosubstitutedmethylenediposphonates 8 (Scheme 6).

### EXPERIMENTAL

<sup>1</sup>H and <sup>31</sup>P NMR spectra were taken on a BRUKER AC-P200 Spectrometer. <sup>1</sup>H chemical shifts are reported in parts per million relative to internal tetramethylsilane. <sup>31</sup>P chemical shifts are reported in parts per million relative to 85% phosphoric acid (external). Quantitative elemental analyses were run on a Yana MT-3 instrument. Mass spectra were recorded on a Hewlett-Packard 5988 instrument. All operations were carried out under a nitrogen atmosphere. The substituted amides and diethyl phosphite were obtained from commercial sources. Tetrahydrofuran, dried over sodium and distilled, was redistilled from LiAlH<sub>4</sub> before use.

|                      | <sup>1</sup> H NMR (CDCl <sub>3</sub> )          |                  |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                             | MS, m/z<br>(rel intensity) |          |
|----------------------|--------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|----------|
| Compound<br><b>4</b> | С <u>Н</u> ₃СН₂О                                 | CH₃C <u>H</u> ₂O | R                                                                                                                                                                              | R'                                                                                                                                                                                                                                                                                                          | R <sup>2</sup>                                                                                         | <sup>31</sup> P NMR<br>(CDCl <sub>3</sub> ) | <b>M</b> +                 | M+-137   |
| а                    | 1.32(m)                                          | 4.19(m)          | $3.42(t, {}^{2}J_{\rm PH} = 25.04)$                                                                                                                                            | 2.67(s)                                                                                                                                                                                                                                                                                                     | 2.67(s)                                                                                                | 18.91                                       | 331(2)                     | 194(100) |
| b                    | 1.22(m)                                          | 4.12(m)          | $3.48(t, {}^{2}J_{\rm PH} = 25.04)$                                                                                                                                            | 2.82(q, ${}^{3}J_{HH} = 7.01$ , N(C <u>H</u> <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub> ,<br>N(CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                              | $0.96(t, {}^{3}J_{\rm HH} = 6.96,$                                                                     | 19.38                                       | 359(1)                     | 222(100) |
| С                    | 1.30(m)                                          | 4.17(m)          | $3.17(t, {}^{2}J_{PH} = 20.87)$                                                                                                                                                | 1.95(br)                                                                                                                                                                                                                                                                                                    | 2.58(s)                                                                                                | 19.25                                       | 317(3)                     | 180(100) |
| d                    | 1.31<br>(t, ${}^{3}J_{HH} = 7.27$ )              | 4.17(m)          | $3.49(t, {}^{2}J_{PH} = 25.04)$                                                                                                                                                | 2.77(t, ${}^{3}J_{HH} = 7.3$ , N(CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub> ,<br>1.42(m, ${}^{3}J_{HH} = 7.3$ , N(CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub> ,<br>0.84(t, ${}^{3}J_{HH} = 7.3$ , N(CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub> , |                                                                                                        | 19.65                                       | 387(1)                     | 250(100) |
| е                    | 1.13(m)                                          | 4.00(m)          | 4.66(t, ${}^{2}J_{\rm PH} = 25.04$ )                                                                                                                                           | 3.01(s)                                                                                                                                                                                                                                                                                                     | 6.25–6.80(o,p-NC <sub>6</sub> <u>H</u> <sub>5</sub> ),<br>7.03–7.12(m-NC <sub>6</sub> H <sub>5</sub> ) | 16.15                                       | 393(5)                     | 256(100) |
| f                    | 1.23<br>(t, <sup>3</sup> J <sub>HH</sub> = 7.16) | 4.10(m)          | $3.22(t, {}^{2}J_{PH} = 25.04)$                                                                                                                                                | 2.85(br, N(C <u>H</u> <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> ), 1.43(br, N(C                                                                                                                                                                                                           | $(H_2CH_2)_2CH_2$                                                                                      | 17.77                                       | 371(4)                     | 234(100) |
| g                    | 1.32<br>(t, ${}^{3}J_{HH} = 7.10$ )              | 4.18(m)          | $3.28(t, {}^{2}J_{PH} = 25.04)$                                                                                                                                                | 2.99(br, N(C <u>H</u> <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O), 3.63(t, ${}^{3}J_{HH} =$                                                                                                                                                                                                              | 5.01, N(CH <sub>2</sub> C <u>H</u> <sub>2</sub> ) <sub>2</sub> O)                                      | 17.09                                       | 373(1)                     | 236(100) |
| h                    | 1.30<br>(t, ${}^{3}J_{HH} = 7.19$ )              | 4.14(m)          | 16.0(t, ${}^{3}J_{\rm PH} =$ 16.95)                                                                                                                                            | 2.61(s)                                                                                                                                                                                                                                                                                                     | 2.61(s)                                                                                                | 23.02                                       | 345(1)                     | 208(100) |
| i                    | 1.20<br>(t, ${}^{3}J_{HH} = 7.30$ )              | 4.09(m)          | $1.55(t, {}^{3}J_{PH} = 16.69)$                                                                                                                                                | 2.91(q, ${}^{3}J_{HH} = 7.12$ , N(C <u>H</u> <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub> ,<br>N(CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                              | $0.94(t, {}^{3}J_{HH} = 7.13,$                                                                         | 22.48                                       | 373(2)                     | 236(100) |
| j                    | 1.25<br>(t, ${}^{3}J_{HH} = 6.94$ )              | 4.12(m)          | 1.59(t, ${}^{3}J_{PH} = 16.66$ )                                                                                                                                               | 2.84(t, ${}^{3}J_{HH} = 7.47$ , N(CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub> , 1<br>0.75(t, ${}^{3}J_{HH} = 7.28$ , N(CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) <sub>2</sub>                                                                                                    | .42(br, N(CH <sub>2</sub> C $\underline{H}_2$ CH <sub>3</sub> ) <sub>2</sub> ,                         | 23.33                                       | 401(4)                     | 264(7)   |
| k                    | 1.34(m)                                          | 4.25(m)          | 1.36(t, ${}^{3}J_{PH} = 16.69$ )                                                                                                                                               | 3.25(s)                                                                                                                                                                                                                                                                                                     | 7.04–7.24(o,p-NC <sub>6</sub> <u>H</u> <sub>5</sub> ),<br>7.29–7.42(m-NC <sub>6</sub> H <sub>5</sub> ) | 22.88                                       | 407(1)                     | 270(100) |
| I                    | 1.30 (t, ${}^{3}J_{HH} = 7.43$ )                 | 4.18(m)          | $1.48(t, {}^{3}J_{PH} = 16.69)$                                                                                                                                                | 3.01(br, N(C <u>H</u> <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> ), 1.45(br, N(C                                                                                                                                                                                                           | $H_2CH_2)_2CH_2$                                                                                       | 22.75                                       | 385(1)                     | 248(100) |
| m                    | 1.27(m)                                          | 4.14(m)          | 1.50(t, <sup>3</sup> J <sub>PH</sub> = 16.69)                                                                                                                                  | 3.58(br, N(CH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O), 3.04(br, N(CH                                                                                                                                                                                                                                 | <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O)                                                         | 22.21                                       | 387(2)                     | 250(100) |
| n                    | 1.14 (t, ${}^{3}J_{\rm HH} = 6.92$ )             | 4.07(m)          | 7.15–7.33(m,p-CC <sub>6</sub> <u>H</u> <sub>5</sub> )<br>7.58–7.89(o-CC <sub>6</sub> H <sub>5</sub> )                                                                          | 2.54(s)                                                                                                                                                                                                                                                                                                     | 2.54(s)                                                                                                | 21.04                                       | 407(1)                     | 270(100) |
| ο                    | 1.25(m)                                          | 4.06(m)          | $3.38(t, {}^{_{3}}J_{PH} = 13.56, CH_{2}Ph),$<br>7.18–7.24(o,p-CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> ),<br>7.39–7.42(m-CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> ) | 2.77(s)                                                                                                                                                                                                                                                                                                     | 2.77(s)                                                                                                | 23.06                                       | 421(1)                     | 284(100) |

<sup>a</sup>Satisfactory microanalyses obtained: C,  $\pm 0.5\%$ ; H,  $\pm 0.5\%$ ; N,  $\pm 0.5\%$ .









TABLE 3 Vinylphosphonates 7 Prepared

| Product<br>7 | R¹     | R²                                   | R                             | δ <sup>31</sup> Ρ<br>(CDCl <sub>3</sub> ) | <sup>з</sup> Ј <sub>РН</sub><br>(Hz) | Z/Eª  | Yield⁵<br>(%) |
|--------------|--------|--------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------|-------|---------------|
| а            | (Cł    | H₂)₅                                 | $C_2H_5$                      | (Z)15.8<br>(E)17.5                        | 42.76<br>13.56                       | 92/8  | 34.0          |
| b            | (Cł    | <b>−</b> <sub>2</sub> ) <sub>5</sub> | $C_6H_5$                      | (Z)13.3                                   | 40.66                                | 67/33 | 40.0          |
| •            | сц     | сц                                   | СЦ                            | (E)16.8                                   | 15.64                                | 15/55 | 24 5          |
| C            |        | C⊓₂<br>₀CH₀                          | С <sub>6</sub> п <sub>5</sub> | (Z)13.7<br>(E)16.9                        | 40.66                                | 45/55 | 34.5          |
| d            | CH₃    | CH <sub>3</sub>                      | $C_6H_5$                      | (Z)14.1                                   | 40.66                                | 10/90 | 40.3          |
|              | ~      | ~                                    | <u></u>                       | (E)17.3                                   | 14.60                                | 20/00 | <u> </u>      |
| е            | CH3    | CH3                                  | $C_2H_5$                      | (Z)15.7<br>(F)19.2                        | 42.74                                | 20/80 | 29.9          |
| f            | $CH_3$ | $CH_3$                               | p-O₂N-                        | (Z)12.7                                   | 40.00                                | 32/68 | 46.9          |
|              |        |                                      | $C_6H_4$                      | (E)15.2                                   | 12.00                                |       |               |

<sup>a</sup>Diasteroisomer ratios were determined by integration of the vinylic proton sigals in the <sup>1</sup>H NMR spectra of compounds **7**.

<sup>b</sup>The isolated yield refered to the total yield of Z and E isomers.

### General Procedure for Preparation of Alkylaminosubstitutedmethylenediphosphonates 4 (R = H, Ph)

A 15 mmol quantity of substituted foramides, benzoylamides, or phenylacetamide in 5 mL dichloromethane was dropped into phosphorus oxychloride (15 mmol, 2.3 g) contained in an ice-water bath. Then the mixture was stirred at 30°C for 30 minutes. After the mixture had been cooled to 15°C, diethyl phosphite (30 mmol, 4.14 g) in 5 mL dichloromethane was added dropwise. The reaction mixture was kept at 30°C for 10 hours. After the reaction mixture had been poured into 50 g of ice water, the mixture was brought to pH 5 with a solution of sodium carbonate in water. The aqueous layer was extracted with ethyl acetate ( $3 \times 30$  mL). The combined organic layers were washed with 50 mL of saturated brine, dried over magnesium sulfate, and filtered. The volatile components were distilled under reduced pressure. The residue was chromatographed on a column of silca gel (dichloromethane and ethyl acetate as eluant) to afford products 4 (yields are shown in Table 1).

### General Procedure for Preparation of Alkylaminosubstitutedmethylenediphosphonates $4 (R = Me, PhCH_2)$

To a stirred mixture of a disubstituted acetamide (15 mmol) and diethyl phosphite (30 mmol, 4.14 g) in 15 mL of dichloromethane contained in an ice-water bath was added dropwise phosphorus oxychloride (15 mmol, 2.3 g) over 5 minutes. Then the reaction mixture was stirred at 30°C for 10 hours.

The purification method for the products was similar to that described previously [general procedure for preparation of alkylaminoalkylenediphosphonates 4 (R = H, Ph)]. (Yields are shown in Table 1.)

## *General Procedure for Preparation of Vinylphosphonates* **7**

Under a nitrogen atmosphere, to a suspension of sodium hydride (5 mmol, 0.12 g) in absolute THF (10 mL) at 15°C was added dropwise a solution of compound 4a, 4f, or 4g (5 mmol) in absolute THF (5 mL). The reaction mixture was stirred at 30°C for 1 hour. A solution of benzaldehyde or propanal (5 mmol) in absolute THF (5 mL) was added dropwise. The reaction mixture was kept at 30°C for 4 hours. Water (20 mL) was added to the reaction mixture, and the aqueous layer was extracted with dichloromethane  $(3 \times 30 \text{ mL})$ . The combined organic layers were washed with 50 mL of saturated brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was analyzed by <sup>1</sup>H NMR spectroscopy (ratios of Z and E isomers are shown in Table 3) and isolated by column chromatography or TLC on silica gel using ethyl acetate:petroleum ether (1:8 or 1-2:1) as eluent or developing solvent. E and Z isomers could be obtained respectively. (Yields are shown in Table 3.)

| Comp | oound <b>7</b> | C <u>H</u> ₃CH₂O                             | CH₃C <u>H</u> ₂O | $R^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <u>H</u> R                                                                           | R                                                                                                                                                                |
|------|----------------|----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a    | (Z)            | $1.24(t, {}^{3}J_{HH} = 6.96)$               | 3.99(m)          | 2.67(t, <sup>3</sup> J <sub>+</sub><br>N(C <u>H</u> <sub>2</sub> CH <sub>2</sub> )<br>1.51(br,<br>N(CH <sub>2</sub> CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $_{\rm HH} = 5.51,$<br>$_{2}^{0}\rm{CH}_{2}),$<br>$_{2}^{0}\rm{CH}_{2}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.39(dt, ${}^{_3}J_{_{PH}} = 42.76,$<br>${}^{_3}J_{_{HH}} = 7.30)$                     | 2.33(m, CC <u>H</u> <sub>2</sub> CH <sub>3</sub> )<br>0.91(t, <sup>3</sup> J <sub>HH</sub> = 7.49, CCH <sub>2</sub> C <u>H</u> <sub>3</sub> )                    |
|      | (E)            | 1.29(t, <sup>3</sup> J <sub>HH</sub> = 7.03) | 4.04(m)          | 1.37(br,<br>N(CH <sub>2</sub> CH <sub>2</sub> )<br>2.65(t, <sup>3</sup> J <sub>+</sub><br>N(C <u>H<sub>2</sub>CH<sub>2</sub>)</u><br>1.49(br,<br>N(CH <sub>2</sub> C <u>H<sub>2</sub>)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $p_{2}CH_{2})$<br>$H_{H} = 5.23,$<br>$p_{2}CH_{2}),$<br>$p_{2}CH_{2}),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.05(dt, <sup>3</sup> J <sub>PH</sub> = 13.56,<br><sup>3</sup> J <sub>HH</sub> = 7.02) | 2.30(m, CC <u>H</u> ₂CH₃)<br>0.89(t, ³J <sub>HH</sub> = 7.65, CCH₂C <u>H</u> ₃)                                                                                  |
| b    | (Z)            | 1.04(t, <sup>3</sup> J <sub>HH</sub> = 7.03) | 3.88(m)          | 1.39(br,<br>N(CH <sub>2</sub> CH <sub>2</sub> )<br>2.93(t, <sup>3</sup> J <sub>+</sub><br>N(C <u>H<sub>2</sub>CH<sub>2</sub>)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $D_2 C H_2)$<br>$H_1 = 5.14,$<br>$D_2 C H_2),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.47(d, ${}^{3}J_{\rm PH} = 40.66$ )                                                   | 7.20–7.36(m,p-C <sub>6</sub> <u>H</u> ₅),<br>7.71–7.76(o-C <sub>6</sub> <u>H</u> ₅)                                                                              |
|      | (E)            | 1.33(t, <sup>3</sup> J <sub>HH</sub> = 6.89) | 4.12(m)          | N(CH <sub>2</sub> C <u>H</u> <sub>2</sub> )<br>2.89(br,<br>N(C <u>H</u> <sub>2</sub> CH <sub>2</sub> )<br>1 55(br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) <sub>2</sub> C <u>H</u> <sub>2</sub> )<br>) <sub>2</sub> CH <sub>2</sub> ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.75(d, ${}^{_3}J_{\rm PH} = 14.93$ )                                                  | 7.24–7.33(m,p-C <sub>6</sub> <u>H</u> <sub>5</sub> ),<br>7.71–7.74(o-C <sub>6</sub> <u>H</u> <sub>5</sub> )                                                      |
| с    | (Z)            | 1.05(t, <sup>3</sup> J <sub>HH</sub> = 6.92) | 3.93(m)          | N(CH <sub>2</sub> C <u>H</u> <sub>2</sub> )<br>3.78(br,<br>N(CH <sub>2</sub> C <u>H</u> <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $p_2 C \underline{H}_2$ )<br>$p_2 O$ ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.47(d, ${}^{3}J_{\rm PH} = 39.62$ )                                                   | 7.24–7.34(m,p-C <sub>6</sub> <u>H</u> ₅),<br>7.70–7.74(o-C <sub>6</sub> <u>H</u> ₅)                                                                              |
|      | (E)            | 1.36(t, ${}^{3}J_{\rm HH} = 6.96$ )          | 4.15(m)          | $3.02(bf, N(3.71(t, {}^{3}J_{H})^{3.71(t, {$ | $C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline{n}_2}C_{\underline$ | $6.85(d, {}^{_3}J_{_{\rm PH}} = 15.64)$                                                | 7.24–7.33(m,p- $C_6H_5$ ),<br>7.75–7.80(o- $C_6H_5$ )                                                                                                            |
| d    | (Z)            | 1.04(t, ${}^{3}J_{\rm HH} = 7.06$ )          | 3.90(m)          | N(C <u>H</u> ₂CH₂)<br>2.60(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )₂O)<br>2.60(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $6.30(d, {}^{3}J_{PH} = 40.66)$                                                        | 7.22–7.33(m,p-C <sub>6</sub> <u>H</u> <sub>5</sub> ),                                                                                                            |
|      | (E)            | 1.32(t, ${}^{3}J_{\rm HH} = 6.37$ )          | 4.11(m)          | 2.65(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.65(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.66(d, <sup>3</sup> J <sub>PH</sub> = 14.60)                                          | 7.51–7.75(o-C <sub>6</sub> <u>H</u> ₅)<br>7.15–7.26(m,p-C <sub>6</sub> <u>H</u> ₅),                                                                              |
| е    | (Z)            | 1.27(t, ${}^{3}J_{\rm HH} = 6.72$ )          | 4.03(m)          | 2.53(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.53(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.41(dt, ${}^{3}J_{PH} = 42.74$ ,                                                      | 7.50–7.54(o-C <sub>6</sub> <u>H</u> <sub>5</sub> )<br>2.22(m, CC <u>H</u> <sub>2</sub> CH <sub>3</sub> ),                                                        |
|      | (E)            | $1.33(t, {}^{3}J_{HH} = 6.34)$               | 4.11(m)          | 2.57(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.57(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ${}^{3}J_{\rm HH} = 6.26)$<br>6.12(dt, ${}^{3}J_{\rm PH} = 13.54,$                     | 0.88(t, ${}^{3}J_{HH} = 7.25$ , CCH <sub>2</sub> C <u>H</u> <sub>3</sub> )<br>2.26(m, CC <u>H</u> <sub>2</sub> CH <sub>3</sub> ),                                |
| f    | (Z)            | $1.27(t, {}^{3}J_{HH} = 6.74)$               | 4.11(m)          | 2.56(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.56(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ${}^{3}J_{\rm HH} = 6.78)$<br>6.07(d, ${}^{3}J_{\rm PH} = 40.00)$                      | $\begin{array}{l} 0.92({\rm t},{}^{_3}J_{\rm HH}=7.31,{\rm CCH_2C\underline{H}_3})\\ 7.45({\rm d},{\rm o-C_6\underline{H}_4}\text{-NO_2}\text{-}4), \end{array}$ |
|      | (E)            | 1.33(t, ${}^{3}J_{\rm HH} = 6.98$ )          | 4.05(m)          | 2.64(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.64(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.40(d, ${}^{3}J_{\rm PH} = 12.00$ )                                                   | 8.05(d, m-C <sub>6</sub> <u>H</u> ₄-NO₂-4)<br>7.37(d, o-C <sub>6</sub> H₄-NO₂-4),<br>8.01(d, m-C <sub>6</sub> H₄-NO₂-4)                                          |

### TABLE 4 <sup>1</sup>H NMR Data of Vinylphosphonates 7<sup>a</sup>

<sup>a</sup>Satisfactory microanalyses obtained: C,  $\pm 0.5\%$ ; H,  $\pm 0.5\%$ ; N,  $\pm 0.5\%$ .

| Compound<br><b>7</b> | Z:E <sup>₅</sup><br>(before heating) | Z:E⁵<br>(after heating) |
|----------------------|--------------------------------------|-------------------------|
| а                    | 92.8                                 | 65:35                   |
| b                    | 100:0                                | 67:33                   |
| c(i)                 | 100:0                                | 59:41                   |
| c(ìí)                | 0:100                                | trace:100               |
| ď                    | 10:90                                | trace:100               |
| f                    | 32:68                                | trace:100               |
|                      |                                      |                         |

TABLE 5 Z/E Isomers Conversion of Compounds 7<sup>a</sup>

<sup>a</sup>An ethyl acetate solution of **7** was refluxed for about 8 hours. <sup>b</sup>Ratios of Z and E isomers were determined by integration of the vinylic proton signals in the <sup>1</sup>H NMR spectra of compounds **7**.



#### **SCHEME 6**

### Alkylation of N,N-Dimethylaminomethylenedisphosphonate (4a) give to Alkylaminosubstitutedmethylenediphosphonate 8

Under a nitrogen atmosphere, to a suspension of sodium hydride (5 mmol, 0.12 g) in absolute THF (10 mL) at 15°C was dropped a solution of N,N-dimethylaminomethylenedisphosphonate (5 mmol) in absolute THF (5 mL). The reaction mixture was stirred at 30°C for 1 hour until the reaction mixture became clear. A solution of benzyl bromide in absolute THF (5 mL) was added dropwise. The reaction was kept at 30°C for 7 hours. The reaction mixture was poured into water (20 mL), and the aqueous layer was extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 50 mL of saturated brine, dried over magnesium sulfate, filtered, and concentrated. The purification of the residue by column chromatography was carried out on silica gel using dichloromethane and ethyl acetate, respectively, as the eluent to afford product 8 (0.656 g, 32.2%). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.15 (t, <sup>3</sup>J<sub>HH</sub> = 7.25 Hz, 12 H, 4 CH<sub>3</sub>), 2.70 (S, 6 H, 2 CH<sub>3</sub>), 3.30 (t, <sup>3</sup>J<sub>PH</sub> = 12.51 Hz, 2 H, CH<sub>2</sub>), 4.05 (m, 8 H, 4 CH<sub>2</sub>), 7.15–7.40 (m, 5 H, C<sub>6</sub>H<sub>5</sub>); <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  22.81; MS, m/z (rel intensity) 421 (M<sup>+</sup>, 1), 284 (100). Anal. calcd for C<sub>18</sub>H<sub>33</sub>NO<sub>6</sub>P<sub>2</sub>: C, 51.30; H, 7.89; N, 3.32. Found: C, 51.73; H, 7.56; N, 3.01.

### REFERENCES

- Ebetino, F. H.; Jamieson, L. A. Phosphorus Sulfur Silicon Relat Elem 1990, 51–52 (1–14), 23.
- [2] Ebetino, F. H.; Kaas, S. M.; Crawford, R. J. Phosphorus Sulfur Silicon Relat Elem 1993, 76 (1–4), 411.
- [3] Degenhardt, C. R. Synth Commun 1982, 12 (6), 415.
- [4] Schrader, T.; Kober, R.; Steglich, W. Synthesis 1986, No. 5, 372.
- [5] Nesterov, L. V.; Krepysheva, N. E.; Aleksandrova, N. A. Zh Obshch Khim 1989, 59 (3), 725.
- [6] Prishchenko, A. A.; Livantsov, M. V.; Boganova, N. V.; Zhutskii, P. V.; Lutsenko, I. F. Zh Obshch Khim 1989, 59 (10), 2381.
- [7] Costisella, B.; Keitel, I.; Gross, H. Tetrahedron 1981, 37, 1227.
- [8] Gross, H.; Costisella, B.; Gnauk, T.; Brennecke, L. J Prakt Chem 1976, 318, 116.
- [9] Qian, D. Q.; Zeng, X. Z.; Shi, X. D.; Cao, R. Z.; Liu, L. Z. Heteroatom Chem 1997, 8, 517.
- [10] Qian, D. Q.; Shi, X. D.; Zeng, X. Z.; Cao, R. Z.; Liu, L.
   Z. Tetrahedron Lett 1997, 38, 6245.
- [11] Cason, J. Principle of Modern Organic Chemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1966; pp 106–107.